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Abstract Discrimination and bias are inherent problems ofmanyAI applications, as
seen in, for instance, face recognition systems not recognizing dark-skinned women
and content moderator tools silencing drag queens online. These outcomes may
derive from limited datasets that do not fully represent society as a whole or from
the AI scientific community’s western-male configuration bias. Although being a
pressing issue, understanding how AI systems can replicate and amplify inequalities
and injustice among underrepresented communities is still in its infancy in social
science and technical communities. This chapter contributes to filling this gap by
exploring the research question: what do diversity and inclusion mean in the context
of AI? This chapter reviews the literature on diversity and inclusion in AI to unearth
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the underpinnings of the topic and identify key concepts, research gaps, and evidence
sources to inform practice and policymaking in this area. Here, attention is directed
to three different levels of the AI development process: the technical, the community,
and the target user level. The latter is expanded upon, providing concrete examples
of usually overlooked communities in the development of AI, such as women, the
LGBTQ+ community, senior citizens, and disabled persons. Sex and gender diversity
considerations emerge as themost at risk inAI applications and practices and thus are
the focus here. To help mitigate the risks that missing sex and gender considerations
in AI could pose for society, this chapter closes with proposing gendering algorithms,
more diverse design teams, andmore inclusive and explicit guiding policies. Overall,
this chapter argues that by integrating diversity and inclusion considerations, AI
systems can be created to be more attuned to all-inclusive societal needs, respect
fundamental rights, and represent contemporary values in modern societies.

Keywords Artificial Intelligence · Gender · Diversity · Inclusion · LGBT · AI Act

6.1 Introduction

Artificial Intelligence (AI) technologies help automate industrial, retail, and farming
sectors and, lately, healthcare, education, and public service. While AI can increase
resource efficiency and productivity, automating parts of society reserved once only
to humans is nonetheless straightforward and raises particular ethical, legal, and
societal concerns.1 A growing global concern is that AI systems may exacerbate
and reinforce existing biases that different societies have with respect to gender, age,
race, and sexual orientation.2 For instance, face recognition systems having difficulty
recognizingdark-skinnedwomenand contentmoderator toolsmay automaticallyflag
how drag queens use language as toxic and prevent them from freely communicating
online.3

These outcomes may derive from limited datasets that do not fully represent the
society4 or from the AI scientific community’s structural and systematic configu-
ration biases.5 Still, they are very influential.6 For instance, there is an exponential
growth of social robots and voice assistants that can socially interact with users. A
common feature of these artefacts is that many of them are given female names,
have female voices, and usually display a servile personality engineered to please
users all the time.7 The use of female voices for serviceable contexts reinforces

1 Schönberger 2019; Wisskirchen et al. 2017; Righetti et al. 2019.
2 Noble 2018; Raji and Buolamwin 2019; Fosch-Villaronga et al. 2021.
3 Raji and Buolamwini 2019; Gomes et al. 2019.
4 Zhao et al. 2017.
5 Roopaei et al. 2021.
6 Willson 2017; Noble 2018; Ito 2019.
7 Liu 2021; Giger et al. 2019.
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gender stereotypes about the role women should (or should not) play in society.8 And
these are usually biases rooted in oppressive gender inequalities that have existed
throughout history and are typically exacerbated by the lack of diversity of the tech-
nical teams developing algorithms which usually work in companies with significant
gender disparities in their board of directors.9 Similar concerns are found in other
AI applications, namely in algorithms for medical applications,10 gender classifiers
for marketing, social media platforms or recruiting practices, resulting in disparities
in hiring.11 Likewise, sex robotics often target straight males and objectify women’s
bodies.12

The scientific community broadly supports the narrative that integrating gender
and sex factors in research makes better science.13 However, many disciplines
struggle to account for diversity. Authors continuously report that ‘inequality and
a lack of gender diversity still exist in medicine, especially in academia and lead-
ership;’14 and that ‘when we look to the diversity in immunology research labs,
overwhelmingly, women, people of color and LGBTQIA+ scientists are underrep-
resented among the laboratory head and top leadership roles.’15 The AI community
is no different in this respect, as highlighted by recent studies that explored gender
biases in the community, i.e., ‘our results indicate a huge gender disbalance among
authors, a lack of geographical diversity (with no representation of the least devel-
oped countries and very low representation of African countries).’16 Missing sex
and gender considerations in the development of AI, however, can lead to adverse
consequences for society that range from exacerbating existing biases and stereo-
types (which are prohibited by law)17 to safety concerns if misgendering a person in
health-related applications.18

Although being a pressing issue, understanding how AI systems can replicate and
amplify inequalities and injustice among underrepresented communities is still in
its infancy in social science and technical communities. This chapter contributes to
filling this gap by exploring the research question: what do diversity and inclusion
mean in the context of AI? To address this question, this chapter reviews the litera-
ture on diversity and inclusion in AI to unearth the underpinnings of the topic. We
identify key concepts, research gaps, and evidence sources to inform practice and

8 Danielescu 2020.
9 West et al. 2019; Rahman and Billionniere 2021.
10 Cirillo et al. 2020.
11 Park and Woo 2019.
12 Richardson 2016.
13 Schiebinger 2014; Tannenbaum et al. 2019.
14 Ekmekcioglu 2021.
15 Groom 2021.
16 Freireç et al. 2020.
17 SeeArticle 5 of theConvention on the Elimination ofAll Forms ofDiscrimination againstWomen
and Article 8(1)(b) of the Convention on the Rights of Persons with Disabilities.
18 Cirillo et al. 2020.
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policymaking in this area. As the most salient diversity and inclusion concerns in
AI, sex and gender considerations are the focus here.

This chapter is structured as follows. First, three different levels of the AI devel-
opment process where diversity and inclusion could be addressed are identified in
Sect. 6.2: the technical, the community, and the target user level. Then, the impli-
cations of missing diversity and inclusion in AI affecting the target user level are
expanded upon in Sect. 6.3, focusing on usually overlooked communities, namely
women, the LGBTQ+ community, senior citizens, and disabled persons. This is done
by examining four AI application case studies: social robots and gendered voices,
algorithms for medical applications, gender classifiers for marketing, social media
platforms, or recruiting practices, and sex robotics and gender-specific target market.
In Sect. 6.4, mitigation strategies to account for missing sex and gender considera-
tions in AI are proposed, including gendering algorithms, more diverse design teams,
and more inclusive and explicit guiding policies. After that, this chapter closes with
concluding remarks in Sect. 6.5.

6.2 Diversity and Inclusion in Artificial Intelligence

Like many concepts, such as intelligence, personality, or emotions, there are many
ways to define, experience, and legalize diversity and inclusion. The dictionary
defines diversity as ’the practice or quality of including or involving people from
a range of different social and ethnic backgrounds and of different genders, sexual
orientations.’19

In the context of AI, those at Google Research define diversity and inclusion as
follows:20

• Diversity: Variety in the representation of individuals in an instance or set of
instances, with respect to sociopolitical power differentials (gender, race, etc.).
Greater diversitymeans a closermatch to a target distributionover socially relevant
characteristics.

• Inclusion: Representation of an individual user within an instance or a set of
instances, where greater inclusion corresponds to better alignment between a user
and the options relevant to them in an instance or set.

Given these definitions, diversity and inclusion in AI have ramifications at three
different levels on which we expand here. The first one is the technical level, in
which questions around the diversity of algorithms, techniques, and applications are
centred around: are the algorithms taking into account all the necessary variables?
Are these algorithms classifying users in discriminatory ways? The second level is
the community surrounding the configuration, development, and deployment of such
techniques and the questions revolving around their practices and how inclusive and

19 See Lexico’s definition at https://www.lexico.com/definition/diversity.
20 Mitchell et al. 2020.

https://www.lexico.com/definition/diversity


6 Diversity and Inclusion in Artificial Intelligence 113

diverse they are: does the team have enough female representation? Are all the team
members from the same background? The third level refers to the target user and
focuses on questions about the person with whom the system will be interacting and
affecting andoften respond to questions aroundResponsibleResearch and Innovation
(RRI): was the project conducted by taking all the stakeholders into account? Did
the research include the users for feedback?

6.2.1 Technical Level

Algorithms are human-made and are likely to replicate human-like biases.21 At the
technical level, algorithms usually work in binary terms (e.g., yes/no, black/white,
move/doesn’t move) as if theworldwere a simple classification problem to be solved.
However, the world is not black or white; it is not masculine or feminine. Think for
instance the case of gender classifiers whose algorithms usually take sex as a primary
point of reference when tasked with classifying users gender-wise: male or female.
Gender Classification Systems (GCS) are trained using a training dataset (or corpus)
of structured and labelled data. These labels categorize data, and the features within,
as either masculine or feminine.

However, sex, gender, and sexuality are different concepts although they are often
used in overlapping ways:22

• “Sex” usually refers to the assigned gender at birth based on sex characteristics
(e.g. genitalia, chromosomes and hormones), usually ‘male’ or ‘female.’—and
in some cases ‘indeterminate’ for persons with intersex characteristics, in some
places (e.g., New Zealand23). As one part of many gender-affirmation healthcare
actions, medical transition can be engaged to accord sex characteristics with one’s
gender identity.24

• “Gender” is both a “person’s internal, deeply held sense of their gender,” also
called gender identity25—also tied to social, cultural, and legal factors.

• “Sexuality” is taken to mean the ‘physical, romantic, and/or emotional attraction
to another person.’26

By using a binary understanding of sex as basis for algorithms, inferred data may
lead to inaccuracies, e.g., systems can misclassify users whose gender differs from
their sex.27 Not classifying users correctly in gender terms can lead to bias and unfair
decisions and may lead to self-fulfilling prophecies, a phenomenon well-known in

21 O’Neil 2016; Caliskan et al. 2017.
22 Fosch-Villaronga et al. 2021.
23 See https://www.legislation.govt.nz/act/public/1995/0016/latest/DLM359369.html.
24 See https://www.acon.org.au/wp-content/uploads/2019/07/TGD_Language-Guide.pdf.
25 See https://www.glaad.org/reference/transgender.
26 Ibidem.
27 Fosch-Villaronga et al. 2021.

https://www.legislation.govt.nz/act/public/1995/0016/latest/DLM359369.html
https://www.acon.org.au/wp-content/uploads/2019/07/TGD_Language-Guide.pdf
https://www.glaad.org/reference/transgender
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profiling.28 These effects may amplify inequality, reinforce binarism, exacerbate
gender stereotyping, and further push people into categories that are hard to break
out.29 This is particularly important because gender stereotyping is not only ’a gener-
alized view or preconception about attributes or characteristics, or the roles that are
or ought to be possessed by, or performed by, women and men.’30 Gender stereo-
types also affect members of the LGBTQ+ community, who often are subsumed
under these roles too, e.g., gay men perceived to be feminine would map onto tradi-
tional ‘warm but less competent’ female stereotypes.31 It also adversely affects the
non-binary and transsexual communities, as it essentializes the body as the source
of gender and cannot be accurately classified.32

6.2.2 Community Level

The AI community is not very diverse. As shown in a recent study reporting the
lack of diversity amongst participants in top international AI conferences33 or in the
lack of gender balance ratio among the editors of AI journals (see Fig. 6.1), the AI
community has been and continues to be male-based:

Historically, technological development seemed to refuse to acknowledge the
existence of women and the LGBTQ+ community in science, as if science was only
reserved to men.34 Being queer was criminalized or devalued in many societies, and
womenwere restricted to caring for the family and children upbringing. Not that long
ago, in the 1950s, countries prosecuted homosexual scientists, as theUnitedKingdom
famously did with Alan Turing. Elsewhere in the 1950s, Germany’s opinion of the
scientific community supported criminalizing homosexuality, defending the anti-gay
paragraph 175 of the German criminal code.35 Although Alan Turing was pardoned
in 2013 and paragraph 175 of the German criminal code has since been abolished,
the available data suggests it will take much more effort before diversity is a reality
for this community in science.36

The same applies to the role women play in science. In the Netherlands, for
instance, women accounted for only 24% of professors in 2018.37 As a result,
current research is shaped by heteronormative standards that tend to overlook essen-
tial elements that may affect women more negatively. For instance, not considering

28 Custers 2013.
29 O’Neil 2016; Hamidi et al. 2018.
30 See https://www.ohchr.org/en/issues/women/wrgs/pages/genderstereotypes.aspx.
31 Sink et al. 2018.
32 Burdge 2007; Howansky et al. 2019.
33 Freire et al. 2020.
34 Cech and Waidzunas 2021; Tao 2018.
35 Whisnant 2012.
36 Gibney 2019.
37 Rathenau Institute 2021.

https://www.ohchr.org/en/issues/women/wrgs/pages/genderstereotypes.aspx
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Fig. 6.1 Screenshot taken 15 September 2021, of the Artificial Intelligence Journal (AIJ) editorial
board webpage38

gender and diversity issues in automotive engineering can lead to more significant
injuries in accidents; or in biomedical research, failing to use female cells and tissues
can pose more health risks to women.39 The lack of diversity and inclusion in AI
practices, ranging from datasets that represent only a portion of broader society,
binary algorithms, and structural and systematic bias in the AI scientific community
prevents the understanding of how these systems affect a big part of society and puts
vulnerable communities at risk.40 A more inclusive and diverse workforce could on
the contrary promote the exploration of questions and the addressing of problems
beyond the narrow slice of humanity that much science currently represents.41

6.2.3 Target User Level

Gender and power relationsmediate the development of technology and technologies
also impact our understanding of gender and human-technology relations,42 which

38 See https://www.journals.elsevier.com/artificial-intelligence/editorial-board.
39 Schiebinger 2014.
40 Poulsen et al. 2020.
41 Nature Editorial 2018.
42 Haraway 2006; Bray 2007; Wajcman 2007.

https://www.journals.elsevier.com/artificial-intelligence/editorial-board
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often goes beyond the male-female binary understanding.43 Unfortunately, other
attributes such as sexuality are often not taken into consideration in the development
of technology (see, e.g., O’Riordan and Phillips44). Users of technology, however,
constitute an extensive entanglement of social constructions, relations, and practices
with technology because they “consume, modify, domesticate, design, reconfigure,
and resist technological development”.45

When framing technology in a traditional white straight male hegemony seen
throughout science, technology, engineering and mathematics (STEM),46 where
inclusion reduces to binary mainstreaming strategies (e.g., the quantitative counting
of somewomen/men),47 one risks different forms of exclusion. Oudshoorn et al. 2004
warn how ‘configuring the user as “everybody”’ runs the risk of making it work for
the majority, while effectively excluding minorities.48 For instance, women, senior
citizens, persons with disabilities, and the LGBTQ+ communities have not been
traditionally considered in society as equal to straight men. As a consequence, there
has been much technological development without taking into consideration these
communities. For instance, bicycles are designed without taking into consideration
women’s bodies, resulting in back seat pain, and female sex toys are often created
by men.49

Personswith disabilities have also been historicallymarginalized throughout tech-
nological progress, usually preventing them systematically from enjoying the same
opportunities and resources as the abled population. For instance, consider the slow
progress to remove some architectural barriers for people with disabilities, which
remains a problem in some nations.50 Still, much of the work investigating bias in AI
centres on the racial and gender discriminatory power these systems have but does
not consider how algorithmic systems may also affect the disabled communities.51

Various are the examples in which technology has been developed for a specific
community with a disability but without really engaging with it, e.g., in the case of
deaf populations.52 In this way, science and technology fields have failed to observe
a key principle amongst the disabled community and its advocates about participa-
tion and co-design: ’nothing about us without us’.53 In the case of sexual rights,
although there have been international efforts towards realizing their sexual rights
from institutions like the United Nations,54 after nearly 30 years of discussion, this

43 Faulkner 2001.
44 O’Riordan and Phillips 2007.
45 Oudshoorn and Pitch 2003.
46 Page 2009.
47 Vida 2020.
48 Oudshoorn et al. 2004.
49 MoMa 2021.
50 Moscoso-Porras 2019.
51 Whittaker et al. 2019.
52 Bragg et al. 2019.
53 Goggin and Newell 2003.
54 United Nations 1993.
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remains an unfinished agenda for the disabled55 as if they failed to recognize people
with disabilities as sexual beings.56 In this respect, technology that could empower
persons with disabilities to engage with their sexual rights is not mainstream and
disregarded as an opportunity.57

If AI applications disregard the LGBTQ+ community, this is not necessarily a
deliberate decision, but it could be due to lack of visibility of this community compa-
rable to the inequitable experiences LGBTQ+ researchers in STEM fields.58 One
study points out significant biases that context-less online content moderation with
AI-driven technology can have concerning online content produced by the LGBTQ+
community. The authors show that Perspective, an AI-driven tool used to measure
the toxicity levels of text developed by Google’s Jigsaw, could potentially impact
drag queens and the LGBTQ+ community online.59 After analysing several drag
queen Twitter accounts, results show that the content produced by drag queens is
flagged as having higher levels of toxicity than typically contentious profiles, such
as Donald Trump and white supremacists. By failing to understand the LGBTQ+
perspective, the online moderator tool fails to discern that some members of the
LGBTQ+ community reclaim derogatory language aimed at this community in a
socially valuable way. Whether this is a result of sample bias, that is using a limited
dataset to train the system which lacks LGBTQ+ voices, or due to exclusion bias,
that is due to human-made decisions that tag certain content in the training dataset
as derogatory at the time of data labelling, this leads to prejudicial and algorithmic
bias. These biases unfairly alienate an already vulnerable community further and
entrench rigid social expectations into systems. Advancing diversity and inclusion
in AI could be a step towards creating practices and systems that are informed by
the social context in which they occur, and not informed by context-blind training
datasets.

6.3 Implications of Missing Diversity and Inclusion in AI

As the primary stakeholders and direct casualties of biased AI systems, such as drag
queens using online socialmedia being banned for language use in the example above
on how AI-powered content moderator tools may silence the LGBT community,
target users are most at risk of being affected by the lack of diversity and inclusion
in AI. To show the broader implications of missing diversity and inclusion in AI,
this section highlights the typically overlooked target user groups affected: women,
the LGBTQ+ community, senior citizens, and disabled persons. Furthermore, this is
done by framing and examining these implications in fourAI application case studies:

55 Temmerman et al. 2014.
56 Maxwell et al. 2006; Roussel 2013.
57 Fosch-Villaronga and Poulsen 2021.
58 Cech and Waidzunas 2021.
59 Gomes et al. 2019.
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Sect. 6.3.1 gendered social robots: the mechanization of women, Sect. 6.3.2 Binary
gender classifiers: guessing objectively what is subjective; Sect. 6.3.3 Algorithms
for medical applications: gender as a safety parameter; and Sect. 6.3.4 Sex robotics:
able-bodied and male-dominated markets.

6.3.1 Gendered Social Robots: The Mechanization of Women

Social robotics research does not fail to account for gender and sex considerations
entirely. Instead, it is one-sided, with women being the primary target for objectifica-
tion in social robotics. The ideal Stepford-wife image and social role, which presents
women as subservient, dutiful, and pleasant, is commonplace in social robotics.60

For instance, the digital social robot Azuma Hikari61 presents a stereotypical image
of women emerging from the Japanese social context, exacerbating existing preju-
dice towards women.62 The developer’s website describes Azuma Hikari as ‘your
personal bride’ and in traditional, stereotypically feminine language, such as soothing
and hard-working, closing with a quote fromAzuma Hikari: ‘I look forward to living
with you, master!’63 This approach to social robotics perpetuates a biased repre-
sentation of women as having to be “young, sexy, soothing, and hard-working in
housework” in service of a male master-like husband user.64

The stereotype of perfect womanhood in social robots65 is observed globally. The
service robot Sona 2.5,66 developed in India in response to the COVID-19 pandemic
and used in hospitals for food delivery, appears to have breasts and be wearing a skirt,
neither of which fulfils any task (see Fig. 6.2). Instead, these aspects are an aesthetic
design choice, ultimately reinforcing the biased view that caregiving is a woman’s
role. Other social robots, including Xiaoice,67 Siri,68 and Google Assistant,69 all
come with female voices out of the box.70 Social robotics needs a ‘feminist reboot’71

at least and, at best, wider and fairer stakeholder engagement to ensure diversity and
inclusion.

60 Strengers and Kennedy 2020.
61 See https://www.gatebox.ai/en/hikari.
62 Liu 2021.
63 See https://www.gatebox.ai/en/hikari.
64 Liu 2021.
65 Giger et al. 2019.
66 See https://clubfirst.org/product/sona-2-5-covid-19-robot/.
67 See http://www.xiaoice.com/.
68 See https://www.apple.com/au/siri/.
69 See https://assistant.google.com/.
70 Liu 2021.
71 Strengers and Kennedy 2020.

https://www.gatebox.ai/en/hikari
https://www.gatebox.ai/en/hikari
https://clubfirst.org/product/sona-2-5-covid-19-robot/
http://www.xiaoice.com/
https://www.apple.com/au/siri/
https://assistant.google.com/
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Fig. 6.2. Service robot Sona 2.5, with breasts and a skirt. Screenshot of a video uploaded to
YouTube by India Times72

6.3.2 Binary Gender Classifiers: Guessing Objectively What
is Subjective

Automated Sensitive Traits Recognition alludes to the use of inference classification
systems that are, in part, trained to look for sensitive traits that stereotypically identify
users as a certain type of person. One of the traits these systems infer is gender via
GCS technologywhich attempts to identify and compare elements in novel input (e.g.,
word usage or images) to known data labelled by gender (e.g., stereotypical feminine
or masculine words or imagery) and classify it by gender. These systems exacerbate
existing stereotypes because they take ‘sex’ as a parameter. In this sense, these
technologies usually build on ‘male’ and ‘female’ categories that exclude the intersex
community.73 For instance, a study by Park andWoo 2019 trained a system to identify
women using a dataset that paired gender with the frequency of sentiment-driven
words.74 During training, the system learned that content produced bywomen tended
to use the words ‘thank’, ‘bless, ‘scary,’ and ‘illness’ about twice as often as men. At
the same time, men used the words ‘accurate,’ ‘important,’ ‘issue,’ and ‘aches’ twice
as often as women.75 The algorithmically produced assumption that a person with
sensitive traits, such as one who might more frequently use words like ‘thank’ and

72 See India Times 2020 Covid-19: Jaipur Hospital Turns To Robots To Take Care Of Coro-
navirus Patients https://navbharattimes.indiatimes.com/video/news/covid-19-jaipur-hospital-turns-
to-robots-to-take-care-of-coronavirus-patients/videoshow/74818092.cms.
73 Fosch-Villaronga et al. 2021.
74 Park and Woo 2019.
75 Park and Woo 2019.

https://navbharattimes.indiatimes.com/video/news/covid-19-jaipur-hospital-turns-to-robots-to-take-care-of-coronavirus-patients/videoshow/74818092.cms
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‘bless,’ is probably a woman, perpetuates stereotypical feminine-masculine societal
roles which do not fully represent society.

Popular training datasets for GCS technology are significantly gender-biased,
associating female names more often with family words than career words and with
arts more than mathematics and science.76 As a result, ‘models trained to perform
prediction on these datasets amplify the existing gender biaswhen evaluated on devel-
opment data.’77 For example, the verb ‘cooking’ is heavily biased towards women in
a classifier trained using the imSitu dataset, amplifying existing gender stereotypes.78

The same gender biases have been shown in natural language processing,79 another
method used to support gender classifiers.80

Algorithms perform poorly in recognizing objectively internal and subjective
aspects tied to social and cultural factors, including gender and emotions.81 Given
that biases can propagate throughout AI models,82 these systems may misclassify
users. In the context of GCS, these systems can misgender users, which has adverse
implications that go from reinforcing gender binarism to undermining autonomy.
Also they can be a tool for surveillance that can threaten someone’s safety.83 To
be misgendered reinforces the idea that society does not consider or recognize a
person’s gender as real, causing rejection, impacting self-esteem and confidence,
feeling authenticity, and increasing one’s perception of being socially stigmatized.84

However, the main problem is that gender identity is primarily subjective and
internal, which completely opposes the idea that gender can be recognized automati-
cally, at least with state-of-the-art GCS technology.85 The same applies to emotional
recognition systems aimed at recognizing user emotions: emotional AI follows a
procrustean design, in which emotions are reduced to physiological parameters
only.86 In this line of thought, it is not hard to imagine that misclassifications can
occur. If used to support ulterior decision-making processes, such misclassification
may lead to adverse effects for the users, ranging from mere discomfort to a chilling
effect or even harm.87

76 Nosek et al. 2002a; Caliskan et al. 2017; Nosek et al. 2002b.
77 Zhao et al. 2017.
78 Zhao et al. 2017.
79 Sun et al. 2019; Zhou et al. 2019.
80 Campa et al. 2019.
81 Dupré et al. 2020; Fosch-Villaronga et al. 2021.
82 Buolamwini and Gebru 2018; Font and Costa-jussà 2019; McDuff et al. 2019; Torralba and Efros
2011.
83 Hamidi et al. 2018.
84 Keyes 2018; Fosch-Villaronga et al. 2021.
85 Fosch-Villaronga et al. 2021.
86 Fosch-Villaronga 2019a, b.
87 Hamidi et al. 2018; Büchi et al. 2020; Nišević et al. 2021.
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6.3.3 Algorithms for Medical Applications: Gender
as a Safety Parameter

If failing to account for sex andgender considerations in algorithmic systems is a point
of concern inAI-driven socialmedia practices (e.g., usingGCS technology), failing to
do so in sensitive domain applications like healthcare, where these considerations are
essential in determining patient safety and healthcare outcomes, is a salient concern.
Despite clear evidence to the contrary, science holds on to the promise that these
systems will help deliver safer care.88,89

The persistent phenomena of failing to support diversity and inclusion has espe-
cially gained ground in the context of rising inequities and bias in healthcare today,
which does not provide adequate care for all, explicitly excluding minority groups
in society like the transgender and the intersex communities. Intertwined with this
concern of exacerbating pre-existing inequities, including gender inequalities, is
embedded bias present in many algorithms due to the lack of inclusion of minorities
in datasets.90 For example, AI used in dermatology to diagnose melanoma lacks the
inclusion of skin colour.91 Another example is the corpus of genomic data, which so
far has seriously underrepresented minorities.92 In the context of AI for medicine,
such crucial differences in sex and gender can be vital when it comes to critical
conditions and directly impact patient safety.

These findings indicate that much work is still needed in the area of diversity in AI
for medicine to eradicate embedded prejudice in AI and strive for medical research
that provides a true representative cross-section of the population.93 Algorithms
should be designed to look at specific features from an intersectional point of view,
like gender as a non-binary characteristic, which may prevent discrimination for
this community. Also, developers should only use sensitive information relating
to gender, sex, or race in specific and regulated applications where it is proven
they matter.94 On the contrary, and as far as possible, AI could also use gender-
neutral biomarkers for decision-making, a practice that could be more in line with
the data minimization principle enshrined in EU data protection law. Alternatively,
developers could design discrimination-aware or privacy-preserving algorithms, also
in the context of medicine.95 In this way, biases could be eliminated from the data
used to train the AI and ensure an equal representation of examples.

88 Yu et al. 2018; Ahuja 2019.
89 Cirillo et al. 2020.
90 Topol 2019.
91 Esteva et al. 2017.
92 Wapner 2018.
93 Topol 2019.
94 Fosch-Villaronga et al. 2021.
95 Kamiran et al. 2013; Cirillo et al. 2020.
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6.3.4 Sex Robotics: Able-Bodied and Male-Dominated
Markets

Sex robots are service robots that perform actions contributing directly to increase in
the satisfaction of the sexual needs of a user.96 These robots often target young, able-
bodied, and typically straight men, both in the way they aremarketed and designed.97

Given the widespread views and narratives concerning sex and sexuality, sex robots
are commonly not targeted to people with disabilities, a group which might benefit
the most from sex robot intervention to help fulfil unmet sexual needs.98

Through a broader lens, the lack of wider inclusion of different user groups leads
sex robotics to have intimate connections with misogyny, child sexual exploitation,
male violence, and the idea that women are programmable.99 The results of a system-
atic exploratory survey on public opinion on sex robots reveal that, in general, men
find sex robots more acceptable than women.100 On the expected capabilities of
sex robots, the statistics also show that women, more than men, prefer robots to be
instructed and obey orders.101 This may suggest that sex robots increase the objec-
tification of the person, regardless of gender, and that, more research is needed to
understand how the interplay between diversity and inclusion could affect sex robot
development.102

Engaging with diversity and inclusion could help open new avenues for the sex
robot industry and potentially help create counternarratives that favour new develop-
ments in this area. For instance, sex robots havemany sexual characteristics and capa-
bilities that might prove helpful in fulfilling the sexual desires of those in disability
care. However, for the most part, sex robotics research excludes persons with disabil-
ities as crucial stakeholders.103 Also, some research on sex robots addresses sex
offenders as users, exploring these artefacts’ use to reduce poor sexual behaviour.104

Yet, studies show that sex offenders are less likely to perceive sex robots as adequate
deterrents for sexual violence against persons.105 Hence, not engaging with the right
communities more inclusively may create wrong and inconsiderate technology and
prevent parts of the population from enjoying the benefits technology offers.

96 Fosch-Villaronga and Poulsen 2021.
97 Fosch-Villaronga and Poulsen 2021.
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6.4 Addressing Diversity and Inclusion in AI

Mitigation strategies are needed to account for the implications of sex and gender
considerations in AI, such as those explored above. This section proposes three
holistic approaches to advance diversity and inclusion in AI that align with current
legislation and are more attuned to societal needs. These are gendering algorithms,
more diverse design teams, and more inclusive and explicit guiding policies.

6.4.1 Diversity in Algorithms: Gendering Algorithms

At the technical level, data collection practices could be more diverse and inclu-
sive. For instance, consider the use of AI in medicine via clinical decision support
algorithms, which are trained using large datasets of electronic health records.
These datasets may contain an unbalanced representation of sex and gender factors,
resulting in algorithmic bias emerging during training.106 Ultimately, considering the
impact of sex and gender on human health (e.g., through opportunities for therapeutic
discovery and the frequency and magnitude of adverse health events), missing these
considerations in AI-driven medicine is of concern.107 In this case, a push towards
more diverse and inclusive AI practices could be to make an effort towards reducing
and eliminating biases from datasets by ensuring there is an equal representation of
sex and gender differences.108 The same practice could be used in GCS research to
the same end. Furthermore, similar advances towards equal representation in the real-
isation of others systems could also reduce bias and improve diversity, particularly
in social and sex robotics through fairer stakeholder engagement.

The exclusion of diverse gender and sex considerations in AI puts vulnerable
communities at risk. Digital identity and participatory culture play a significant role
in the sense of self in the modern world and there could be more efforts to realize
diversity and inclusion in the onlineworld109 to not perpetuate the normative view that
particular groups of people, such as trans or non-binary people, do not exist.110 For
instance, gender classifiers could be developed using a more accurate understanding
of gender to represent contemporary society fully. For instance, algorithms can be
designed to look at certain features from an intersectional point of view, like gender
as a non-binary characteristic. As far as possible, gender-neutral biomarkers could
also be used by AI for decision-making. In this way, biases can be eliminated from
the data used to train the AI by ensuring there is an equal representation of examples,
and diversity can be better accounted for111 Having a GCS that accounts for diversity

106 Cirillo et al. 2020.
107 McGregor 2016.
108 Cirillo et al. 2020.
109 Jenkins et al. 2016.
110 Keyes 2018.
111 Kamiran et al. 2013.



124 E. Fosch-Villaronga and A. Poulsen

and inclusion would help reduce bias in systems in which gender inferences flow,
including search and recommendation systems, which similarly need to be fairness-
aware (i.e., data handling is guided by ethical, social, and legal dimensions).112

6.4.2 Diverse Teams, Organizations, and Design

Accounting for stakeholder values, promoting positive value impact, and eliminating
and mitigating adverse effects requires teams designing, developing, and imple-
menting AI to have diverse configurations, administration, and design thinking.
Diverse groups havemore accurate discussions, citemore facts,make fewermistakes,
and are more willing to discuss sensitive topics such as racism.113 Diverse teams also
contribute to radical innovation processes114 and although they are less confident and
perceive group interactions as less effective, they perform better than more homoge-
neous groups.115 In short, people from diverse backgrounds can help improve group
thinking. Given that AI can affect individuals and society at large, thinking of ways
to increase diversity in the teams building AI systems can prove beneficial in the
long term.

To avoid replicating bias in AI, considering the values of vulnerable communities,
such as people with disabilities, the LGBTQ+ community, or women, is crucial.
Participatory, user-centred design methods that centre on diverse human values and
include the voice of the user in the realization of an artefact, such as value sensitive
design,116 are the best way forward to account for diversity and inclusion in AI.
Furthermore, adopting holistic inclusion strategies and diverse teams in robotics and
AI could ease the understanding of the challenges around discrimination and bias
experienced byvulnerable communities.117 Noteworthy outlier initiativeswhich have
embraced these approaches and are pushing for diversity and inclusion in robotics
and AI include Pride@CSIRO118 and Queer in AI.119 Both these initiatives seek to
foster inclusive environments in AI research, recruit diverse and talented people,
and engage grand technology challenges with a diversity of the minds and lived
experiences.

Digital identity and participatory culture play a determinant role in the sense of
self in the modern world. In this sense, there could be more efforts towards real-
izing diversity and inclusion in the online world120 to not perpetuate the normative

112 Geyik et al. 2019.
113 Sommers 2006; Rock and Grant 2016.
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view that certain collectives such as trans or non-binary do not exist.121 Holistic
inclusion strategies on multiple levels, e.g., how these communities and the indi-
viduals can benefit from robot technology, could combat this issue. More research
is needed to create knowledge about how different communities, such as women,
LGBTQ+, and persons with discapacities, engage with and value technologies to
identify how to better include them in all levels of the design, creation, and imple-
mentation process. An essential recommendation is that these users are included thor-
oughly in the design-implementation-use lifecycle of AI through participatory, user-
centred design methods, such as value sensitive design,122 as these could positively
or adversely impact these user groups’ lives.

6.4.3 More Inclusive Guidelines, Policies, and Regulation

Designers play a significant role in shaping technology tomeet the needs of users and
the goals of regulators.123 However, robot developers are not always in a position to
foresee the potential risks that their creations may have because they are usually too
intent on solving a particular problem. Users may also be more concerned with the
practical benefits that they gain from employing the technology than reflecting on
whether it is beneficial for them or not.124 Branching across and above the technical,
community, and target user levels, policy operates on a meta-level that could help
strengthen diversity and inclusion in AI throughout the other levels. AI designers, for
instance, need to respect the EUCharter of Fundamental Rights (EUCFR), including
its Articles 1 on dignity, 7–8 on private life and protection of personal data, 21 on
non- discrimination, 23 on equality between women and men. There are also two
international human rights treaties that include explicit obligations relating to harmful
and wrongful stereotyping. These articles translate into direct obligations for AI
designers to develop systems that are safe, respect user privacy, do not discriminate,
and do not generate or reinforce stereotypes.

Still, AI developers may struggle to implement these human rights in their teams
or their designs because the current legal framework is fragmented, lacks concrete
guidance, and strives to account for diversity and inclusion.125 For instance, sex and
gender considerations have not been traditionally considered sensitive or essential
aspects in related EU legal frameworks, such as theGeneralData ProtectionDirective
(GDPR), the Medical Device Regulation, or the Safety Machinery Directive.126

121 Keyes 2018.
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In April 2021, the European institutions released a proposal for a regulation laying
down harmonized rules on AI (also called draft AI Act).127 The draft AI Act bases its
wording on the idea that AI designers need to respect the principles of data protec-
tion, consumer protection, non-discrimination and gender equality. The draft AI Act
complements existing EU law on non-discrimination that lays down specific require-
ments to minimize the risk of algorithmic discrimination, especially concerning the
design and the quality of data sets used for AI systems and the obligations for testing,
risk management, documentation, and human oversight throughout the AI systems’
lifecycle.

The draft AI Act also identifies those ‘AI systems that pose significant risks to
the health and safety or fundamental rights of persons’ as ‘high-risk’. However, the
AI Act does not have an intersectional approach for algorithmic discrimination of
certain groups. Gender equality is only mentioned once, and although it is clear that
the AI Act stresses that algorithms can discriminate against age groups, persons with
disabilities, or persons of specific racial or ethnic origins or sexual orientation, this
is in the context of work-related matters. However, failing to acknowledge that algo-
rithms and AI can discriminate against society in general, including women, senior
citizens, persons with disabilities, the LGBTQ+ community, or communities from
different religions, is failing society. A more inclusive, diverse, and intersectional
approach to AI regulation is deemed necessary if the EU expects to ensure that AI
is of, by, and for the people.

Amidst this regulatory turmoil, the notion of responsible research and innovation
(RRI) has emerged as an overarching concept that captures crucial aspects concerning
what researchers can do to ensure that science, research, and innovation have posi-
tive, socially acceptable, and desirable outcomes.128 The RRI approach provides a
suitable framework to guide all the social actors involved in research and innovation
(R&I) processes towards this aim. The European Commission defines RRI as “an
approach that anticipates and assesses potential implications and societal expecta-
tions concerning research and innovation, intending to foster the design of inclusive
and sustainable research and innovation.”129 Through the lens of RRI, the principles
of inclusion, anticipation, reflection, and responsiveness typically guide the research
and innovation (R&I) processes and could prove to be instrumental in achieving
more inclusive and diverse AI—at least in transition times.

of the Council of 5 April 2017 on medical devices; and the Directive 2006/42/EC of the European
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6.5 Conclusion

Social inequalities recreated as AI bias result from the lack of diversity and inclusion
in AI practices. For instance, by failing to account for the socially valuable use of
LGBTQ+ speech aiming to reclaim derogatory language within that community, AI-
driven content moderator tools automatically flag online posts of drag queens using
reclaimed language as toxic and prevent them from freely communicating online.130

These kinds of biases emerge from a range of inequities preserved in AI practices,
from limited datasets that do not fully represent society131 to structural and systematic
biased configurations of the AI scientific community.132 At risk is the amplification
of stereotypes, alienation of minority and silent communities, and entrenchment of
rigid social expectations in systems.133

Although there is increasing attention from robotics, the Human-Robot Interac-
tion and AI communities to address diversity, particularly biased and discriminatory
algorithms,134 biases persist, and vulnerable communities remain mainly invisible
and at risk.135 This calls for action toward the redefinition of inclusion and exclu-
sion, the boundaries and limitations of diversity for the robotics andAI community.136

Advancing diversity and inclusion in AI, therefore, could be a step towards creating
practices and system output that are informed by the social context in which they
occur, and not informed by a select few in a research laboratory or by context-blind
trained systems.137

130 Raji and Buolamwini 2019; Gomes et al. 2019.
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