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Abstract

The lack of diversity of the Artificial Intelligence (AI) field is nowadays a concern, and
several initiatives such as funding schemes and mentoring programs have been designed to
overcome it. However, there is no indication on how these initiatives actually impact AI
diversity in the short and long term. This work studies the concept of diversity in this par-
ticular context and proposes a small set of diversity indicators (i.e. indexes) of AI scientific
events. These indicators are designed to quantify the diversity of the AI field and monitor
its evolution. We consider diversity in terms of gender, geographical location and business
(understood as the presence of academia versus industry). We compute these indicators
for the different communities of a conference: authors, keynote speakers and organizing
committee. From these components we compute a summarized diversity indicator for each
AI event. We evaluate the proposed indexes for a set of recent major AI conferences and
we discuss their values and limitations.
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1. Introduction

It is well recognized that Artificial Intelligence (AI) field is facing a diversity crisis, and
that the lack of diversity contributes to perpetuate historical biases and power imbalance.
Different reports, such as the European Ethics guidelines for trustworthy AI1 and the last
AI Now Institute report (West et al. (2019)), emphasize the urgency of fighting for diversity
and re-considering diversity in a broader sense, including gender, culture, origin and other
attributes such as discipline or domain that can contribute to a more diverse research and
development of AI systems.

As a consequence, the research community has established different initiatives for in-
creasing diversity such as mentoring programs, visibility efforts, travel grants, committee
diversity chairs and special workshops2. However, there is no mechanism to measure and
monitor the diversity of a scientific community and be able to assess the impact of these
different initiatives and policies.

1. https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
2. See, for instance, the activities launched by the Women in Machine Learning initiative: https:

//wimlworkshop.org
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In order to address that we propose a methodology to monitor the diversity of a scientific
community. We focus on a set of international, well-recognized scientific conferences as they
are the most relevant outcome at the moment for AI research dissemination. We consider
diversity in terms of gender, geographical location and academia vs industry (possibly to
extend further) and incorporate three different aspects of a scientific conference: authors,
keynote speakers and organizers. After a literature review on diversity, we present the
proposed indicators and illustrate them in a set of impact AI conferences.

2. Background

2.1. The concept and measurement of diversity

Addressing the problem of conceptualizing diversity is a long-lasting debate in the academic
community, object of study of several disciplines such as ecology, geography, psychology,
linguistics, sociology, economics and communication, among the others. The interest in
estimating the degree of diversity is often justified by the relevance of its possible impact:
from the promotion of pluralism and gender, racial and cultural equality, to the enhance-
ment of productivity, innovation and creativity in sociotechnical systems (Stirling (2007)).
Introducing its ubiquity, in a very broad sense Stirling defines diversity as ”an attribute of
any system whose elements may be apportioned into categories”.

We can find in the previous definition two words which reflect different dimensions of
diversity: elements and categories. The latter is strictly related to the concept of richness,
which can be interpreted as the number of categories present in a system. The former
instead is connected to the evenness of a system, i.e. the distribution of elements across
the categories. Richness and evenness are the two facets of what in the literature is called
dual-concept diversity (McDonald and Dimmick (2003)). Along with them, disparity is a
third dimension of diversity, describing the difference between categories (Stirling (2007)).

Nonetheless, even if Stirling’s definition can be easily generalizable to different contexts,
it is fundamental to notice that approaching diversity several interpretations can be adopted,
according to the context of use. Indeed, to completely abstract from the social context in
which a technology is implanted when modelling diversity can be misleading, as Selbst
et al. (2018) discuss. Even if the authors focus on the concept of fairness, likewise the issues
identified can be found while treating diversity, considering the several common aspects
between these two values, as pointed out by Celis et al. (2016). Similarly, Mitchell et al.
(2020) discuss the link between fairness and diversity, and emphasize the differences between
the idea of heterogeneity related to the variety of any attribute within a set of instances, in
comparison to diversity intended as variety with respect to sociopolitical power differentials,
such as gender and race. As Drosou et al. (2017) affirm analyzing diversity in Big Data
applications, diversity can hardly be universally defined in a unique way.

The issues which arise in the conceptualization of diversity are reflected when attempts
are made for establishing a universal formula to audit the diversity of a system. However, in
several fields different needs have led to the formulation of different measurements, nowadays
still in use and effective. Following, we refer to a diversity index as a measure able to quantify
the relationship between elements distributed in categories of a system.

Two diversity indexes still being widely used have been proposed at the end of the 1940s:
the commonly called Shannon index (H’) (Shannon (1948)), and the Simpson index (D)
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(Simpson (1949)). Even if originally from two different fields, namely Information Theory
and Ecology, both are based on the idea of choice and uncertainty. Indeed, Shannon defines
his formula wondering what measure would be suitable to describe the degree of uncer-
tainty involved in choosing at random one event within a set of events. Similarly, Simpson
formulated his index measuring the probability of choosing randomly two individuals from
the same group within a population.

The main limitation of these indexes is their focus on the analysis of the frequency of the
elements, leaving aside any semantic information. Bar-Hillel and Carnap (1953) discuss this
limit, considering also the meaning of symbols in contrast to the frequentist approach. This
semantic gap of diversity measurements can be partly solved by the introduction of a third
dimension of diversity, disparity, which joins variety and balance by creating a more solid
framework for diversity analysis. This dimension is present in the Rao-Stirling diversity
index:

∆ =
∑
i,j i 6=j

(dij)
α(pi · pj)β (1)

where dij indicates the disparity between elements i and j, while pi and pj the propor-
tional representations of those elements. This index initially proposed by Rao (1982), and
revisited by Stirling (2007), is often considered while analyzing research interdisciplinarity
in Scientometrics studies, even if its validity is still being discussed, as recently done by
Leydesdorff et al. (2019).

In the next sections, we focus separately on the indexes we will use for our diversity
analysis.

2.2. Shannon Index

H ′ = −
S∑
i=1

pi ln pi (2)

Consider that p = n/N is the proportion of individuals of one particular species found
n divided by the total number of individuals found N , and S is the number of species.

The Shannon index takes values between 1.5 and 3.5 in most ecological studies, and
the index is rarely greater than 4. This measure increases as both the richness and the
evenness of the community increase. The fact that the index incorporates both components
of biodiversity can be seen as both a strength and a weakness. It is a strength because it
provides a simple, synthetic summary, but it is a weakness because it makes it difficult to
compare communities that differ greatly in richness.

2.2.1. Pielou Index

The Shannon evenness, discarding the richness, can be computed by means of the Pielou
diversity index (Pielou (1966)):

J ′ =
H ′

H ′
max

(3)
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H ′ is the Shannon diversity index and H ′
max is the maximum possible value of H ′ (if

every species was equally likely):

H ′
max = −

S∑
i=1

1

S
ln

1

S
= lnS (4)

J ′ is constrained between 0 and 1, meaning 1 the highest evenness.

2.3. Simpson Index

The Simpson diversity index is a dominance index because it gives more weight to common
or dominant species. In this case, a few rare species with only a few representatives will
not affect the diversity. Since D takes values between 0 and 1 and approaches 1 in the
limit of a mono-culture, 1 −D provides an intuitive proportional measure of diversity that
is much less sensitive to species richness. Thus, Simpson’s index is usually reported as its
complement 1 −D.

D =

∑
S n(n− 1)

N(N − 1)
(5)

3. Diversity indexes for AI conferences

This work proposes several diversity indicators to measure gender, geographical and business
diversity in top Artificial Intelligence conferences. Gender diversity is the main focus of
programs such as Women in ML3; Geographic diversity is linked to the presence of different
countries and cultures in AI research. Finally, academia vs industry provides a way to
assess the type of institutions contributing to AI research. We think these are three key
socio-economic aspects of AI communities. All our indicators base their formulation in the
biodiversity indexes described in the previous sections.

3.1. Gender Diversity Index (GDI)

We consider S different species in the gender dimension: ”male”, ”female” and any gender
identity beyond the binary framework. We should distinguish between two possible cases:

• Only three species collected (”male”, ”female” and ”other”). In this case, richness is
not so relevant, while evenness gains more importance; therefore, we can discard the
Simpson index and compute the Shannon evenness (we discard richness) by means of
the Pielou diversity index.

• More species (gender identities) collected: we can apply the Shannon index in order
to measure the evenness together with the richness.

To compute the Diversity Index, we consider three different communities, as they rep-
resent complementary contributions to the scientific event: keynotes (k), authors (a) and
organisers (o). Our final GDI performs a weighted average among the Pielou index in each
community:

3. https://wimlworkshop.org/
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GDI = wkJ
′
k + waJ

′
a + woJ

′
o (6)

As a default, we provide the same weight to keynotes, authors and organisers, although
this can be configured to give more relevance to certain groups:

W = [wk, wa, wo] = [
1

3
,
1

3
,
1

3
] (7)

3.2. Geographical Diversity Index (GeoDI)

In order to compute the Geographical Diversity Index we consider the same three commu-
nities: keynotes, authors and organisers. As we have multiple species (countries), we want
to measure the richness together with the evenness, so we apply the weighted average of
the Shannon Index community (this index may be greater than 1), using the weights W
defined in Equation 7:

GeoDI = wkH
′
k + waH

′
a + woH

′
o (8)

This index could also be computed by using the Simpson Index, but this would avoid
the effect of very infrequent species (few people from some countries).

3.3. Business Diversity Index (BDI)

The Business Diversity Index aims to compute the diversity of a conference regarding the
presence of industry, academia and research centres. Thus, we apply Equation 3, considering
S = 3 when computing H ′

max (similar to GDI considering 3 species). Weights W are defined
in Equation 7:

BDI = wkJ
′
k + waJ

′
a + woJ

′
o (9)

3.4. Conference Diversity Index (CDI)

The general Diversity Index of a Conference (CDI) is computed by averaging GDI, GeoDI
and BDI. The typical values for the Shannon index are generally between 1.5 and 3.5 in most
ecological studies, being rarely greater than 4. Therefore, GeoDI needs to be normalized
between [0, 1] before being combined with the other indexes, so we divide it by 3.5. See
Table 1 that summarises all the proposed indexes.

CDI =
GDI + GeoDI

3.5 + BDI

3
(10)

4. Indexes evaluation

In this section we describe the procedures of handling the data in order to evaluate the
suitability of the proposed indexes to represent the diversity of major AI events.
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Table 1: Diversity Indexes.
Index Notation Based on Range
Gender Diversity Index GDI Pielou/Shannon Index [0, 1]/[0, 4]
Geographical Diversity Index GeoDI Shannon Index [0, 4]
Business Diversity Index BDI Pielou Index [0, 1]
Conference Diversity Index CDI - [0, 1]

4.1. Dataset

The data publicly available from AI conferences is restricted to the name, surname and
affiliation of authors, keynotes and organisers. This leads to some limitations when com-
puting the proposed indicators. For instance, no data is provided about gender, so it needs
to be inferred based on the name and surname, which introduces some errors and oversim-
plification to binary labels. Another limitation affects the way in which we compute the
geographical diversity index. Having information just about the affiliation and not about
the nationality, makes ethnic-based analysis extremely difficult to be performed. However,
these limitations can be solved if the conferences’ organisers collect more data at registra-
tion time, for instance. We are aware that some of this data might be personal and sensitive
information but it can be beneficial to extract this kind of statistical analysis, which should
ensure strict privacy and governance rules.

In order to compute the diversity indexes, we need to measure p = n/N (i.e.: the
proportion of individuals of one particular species found n divided by the total number of
individuals found N), and S (i.e.: the number of species). For this purpose, we collected the
names and affiliations of keynotes, organisers and authors (of a random sample comprising
10% of the papers) of four consecutive years of NeurIPS4, RecSys5 and ICML6. The size
of each sample is listed in Table 2. This data was gathered on several hackfests using
a collaborative web application7 designed for this purpose, that we also used to engage
with AI students and the research community (e.g. AAAI conference) and outreach on the
relevance of the topic and the need for community efforts. All the project data and material
is available openly so it can be reproduced and extended to other conferences. Note that
our indicators are exclusively based on public-domain information available at conference
proceedings.

Table 2: Analysed conferences and size of the collected samples per year. Note that the
sample size includes authors, keynotes and organisers.

Conference Acronym Year (Sample Size)
NeurIPS 2017 (343), 2018 (215), 2019 (549), 2020 (851)
RecSys 2017 (41), 2018 (68), 2019 (69), 2020 (70)
ICML 2017 (137), 2018 (264), 2019 (358), 2020 (450)

4. NeurIPS: Conference on Neural Information Processing Systems
5. RecSys: The ACM Recommender Systems conference
6. ICML: International Conference on Machine Learning
7. https://divinai.org
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4.1.1. Computing GDI

When computing the Gender Diversity Index, our dataset does not provide gender identity
information, so we infer the gender based on the given first name and surname (in some
cases, we made use of the NamSor gender classifier library8).

Due to this limitation of the publicly available datasets for identifying more gender
options, we got S = 2 different species: ”male” and ”female” and we used the Pielou
diversity index ([0,1]). As we mentioned before, this fact can be overcame if the dataset
includes more gender options (for instance, if this data is collected by the organisers of a
conference, using information provided during registration).

4.1.2. Computing GeoDI

In order to measure the Geographical Diversity Index, the available information in our
dataset is just the country of the affiliation. This means that we might not be considering
the nationality, but the current location of each individual. This limitation could be avoided
by, again, asking for the nationality in the registration form and building the dataset with
this information.

4.1.3. Computing BDI

The Business Diversity Index aims to compute the diversity of a conference regarding the
presence of industry, academia and research centres. Once again, the affiliation gives us
this information, although in some cases some specific web search was needed to label
the dataset. For authors with double affiliation, we consider the first one for the labeling
process. In this case, we set S = 3.

Table 3: Gender Diversity Index (GDI), with the percentage of male and female among
authors (from a random sample of 10% of the papers), keynotes and organisers.

.

Conference %Female %Male GDI
Auth Key Org Auth Key Org

NeurIPS 2020 20.01 42.90 47.10 79.09 57.10 52.90 0.90
NeurIPS 2019 16.60 42.90 51.90 83.40 57.10 48.10 0.89
NeurIPS 2018 7.10 42.90 20.90 92.90 57.10 79.10 0.70
NeurIPS 2017 9.45 42.90 21.30 90.05 57.10 78.70 0.73
RecSys 2020 8.46 33.30 23.70 91.50 66.70 76.30 0.69
RecSys 2019 12.70 100 23.10 87.30 0 76.90 0.42
RecSys 2018 14.30 66.70 30.40 85.70 33.30 69.60 0.80
RecSys 2017 15.30 0 13.60 84.70 100 86.40 0.35
ICML 2020 15.50 33.30 37.90 84.50 66.70 62.10 0.84
ICML 2019 11.40 66.70 38.10 88.60 33.30 61.90 0.63
ICML 2018 9.80 50.00 28.90 90.20 50.00 71.10 0.78
ICML 2017 7.70 50.00 29.40 92.30 50.00 70.60 0.76

8. https://v2.namsor.com/
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Table 4: Geographical Diversity Index (GeoDI), with the number of developing countries
and continents represented (we only collected the authors of the 10% of the papers).

Conference # Countries # Continents GeoDI/3.5 GeoDI continents
Auth Key Org Auth Key Org

NeurIPS 2020 28 5 9 5 3 5 0.50 0.55
NeurIPS 2019 5 2 8 3 1 4 0.19 0.16
NeurIPS 2018 15 3 11 4 2 3 0.36 0.34
NeurIPS 2017 19 3 10 4 2 3 0.36 0.36
RecSys 2020 9 2 16 4 2 4 0.48 0.51
RecSys 2019 5 2 8 3 1 3 0.36 0.33
RecSys 2018 9 2 9 3 1 3 0.42 0.31
RecSys 2017 5 2 10 3 2 4 0.37 0.43
ICML 2020 25 2 5 5 2 3 0.33 0.38
ICML 2019 20 2 3 3 2 2 0.30 0.35
ICML 2018 14 2 7 4 2 2 0.34 0.37
ICML 2017 13 3 6 3 2 4 0.41 0.46

Table 5: Business Diversity Index (BDI), presenting as well the percentage of authors (from
a random sample of 10% of the papers), keynotes and organisers belonging to
Academia, Industry or Research Centres.

Conference %Academia %Industry %Research Centre BDI
Auth Key Org Auth Key Org Auth Key Org

NeurIPS 2020 52.60 57.10 41.20 31.70 14.30 47.10 15.70 28.60 11.80 0.89
NeurIPS 2019 49.10 85.70 44.40 39.50 14.30 40.07 11.40 0 14.80 0.72
NeurIPS 2018 72.30 57.10 59.70 9.22 42.90 31.30 18.40 0 8.96 0.71
NeurIPS 2017 73.10 57.10 63.90 22.20 42.90 29.50 4.73 0 6.56 0.67
RecSys 2020 69.00 66.70 78.90 27.60 33.30 18.40 3.40 0 2.60 0.59
RecSys 2019 40.00 100.00 69.20 55.40 0 23.10 4.62 0 7.69 0.49
RecSys 2018 23.80 33.30 56.50 47.60 66.70 39.10 28.60 0 4.35 0.78
RecSys 2017 70.80 50.00 81.80 28.30 50.00 13.60 0.89 0 4.55 0.58
ICML 2020 48.70 66.70 58.60 39.20 33.30 20.70 12.10 0 20.70 0.68
ICML 2019 43.10 66.70 76.20 42.50 33.30 19.00 14.40 0 4.76 0.70
ICML 2018 66.70 100.00 77.80 27.10 0 17.80 6.19 0 4.44 0.44
ICML 2017 51.80 50.00 88.20 34.20 25.00 11.80 14.00 25.00 0 0.72
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4.2. Results

In this section, we analyse the diversity indexes computed for the set of selected conferences.
We structure the analysis in four different parts, corresponding to the four diversity indexes:
GDI, GeoDI, BDI and the general CDI.

Table 3 reports the percentage of male and female among authors, keynotes and or-
ganizers. In general, the values obtained for GDI are quite high (over 0.50), except for
GDI(RecSys2017) = 0.35 and GDI(RecSys2019) = 0.42), as it is penalising the presence
not just the low presence of female authors and organisers but also the presence of just one
gender among the keynotes (in 2017 all keynotes were ”male” and in 2019 all keynotes were
”female”). If we focus on the rest of the conferences, we observe that there are efforts in
the scientific community to balance gender among the keynotes. However, organisers and
authors are mostly ”male” and women do organize more than authorise. Those conferences
balancing also the gender among organisers (NeurIPS 2019 and NeurIPS 2020) got the
highest GDI (0.89 and 0.9 respectively).

The analysis regarding the Geographical Diversity Index is summarised in Table 4. As
we mentioned before, we normalised it to the range [0,1] to make it comparable with the
other indexes. As an index based just on the number of countries might hide a lack of
diversity regarding, for instance, the presence of researchers from least developed countries,
we also computed the number of developing countries present (following the United Nations
classification9). We couldn’t find any representation of any of the countries included in this
list containing 46 countries. Thus, we also grouped the affiliations data in order to report
the presence of continents and explore the variability of the index in considering these major
geographical divisions. The GeoDIcontinents index is computed following the Pielou Index
formula (see Equation 3) and is also listed in Table 4. It belongs to the range [0,1], so
normalization is not needed.

We can see that, in general, the indexes computed for the continents are very similar to
those related to the countries, and they have a value below 0.5. We consider 7 continents
(Africa, Antarctica, Asia, Europe, North America, South America and Oceania), in order to
avoid hiding lower representation of Latin American countries. In most of the conferences
explored, there are few species (usually 3 -North America, Europe and Asia- and rarely 4
-including Oceania-). Moreover, these countries are not equally represented: most of the
keynotes come from North America or Europe and just 5 researchers from Africa were found
among authors and organisers. We would also like to note the importance of the conference
location for promoting the presence of minorities. We highlight the case of RecSys 2020,
located in Brazil, with a high representation of organisers (13 out of 38) and even one
keynote (out of 3) from South America, a continent with almost no representation in the
rest of the events.

Table 5 reports the Business Diversity Index for the studied conferences. Again, NeurIPS
2020 presents the higher diversity index (0.89), as it has representation from all sectors. On
the other side, the lowest indexes are reached by ICML 2018 (0.44) and RecSys 2019 (0.49)
as all the keynotes belong to Academia. In general, most of the conferences are academic
(having low representation from industry or research centres). In the case of RecSys 2018

9. https://unctad.org/topic/least-developed-countries/list
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(0.78), this good index is due the great balance of the different species even if there is not
keynotes belonging to a Research Centre.

We observe that the diversity indexes can provide more information at a glance than
the other measures reported (percentages, number of countries...). In fact, the general
Conference Diversity Index (CDI) aims to summarize, using just one value, the gender,
geographical and business diversity of a conference. This index also provides a very useful
measure to monitor the diversity evolution of a conference, and easily compare it with
other conferences of the same topic. Figure 1 shows how the different conferences evolve in
terms of the Conference Diversity Index. Values of CDI over 0.5 means that the conference
achieves acceptable diversity indexes. For a more detailed information about this indicator,
we should explore each index separately.

Figure 1: Conference Diversity Index (CDI) evolution.

5. Conclusions

This work aims to raise awareness about the lack of diversity in Artificial Intelligence, by
defining a set of indicators that measure the gender, geographical and business diversity of
international AI conferences. We have explored a set of recent top international AI con-
ferences in order to compute their related indexes and compare them in terms of diversity.
Our results indicate a huge gender unbalance among authors, a lack of geographical di-
versity (with no representation of least developed countries and very low representation of
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African countries). However, we could show evidence of the recent efforts done in promoting
minorities among keynote speakers, reaching gender balance in several conferences.

We should note that these preliminary conclusions are limited by the conference sample,
the considered gender proxy (simplified to three classes and labeled based on name, with
potential errors), and the fact that the geographical proxy relates to affiliation and not
nationality. We will consider these aspects in future work and developments.

However, we think that our proposed formulation for measuring diversity can be ex-
tremely useful for conference organisers, as they can have access to more detailed data that
can shed light on the lack of diversity from different perspectives. With this information,
organisers should focus on those indexes under 0.5 and try to increase them by launching
specific actions for promoting the identified minorities: scholarships or discounts for un-
derrepresented collectives, celebrating conferences in locations with lower representation,
more diversity among keynote speakers and organisers, etc. We would like to note that the
indexes proposed in this work can easily be applied to conferences of different topics.

As future work, we would like to explore the viability of studying the ethnic diversity
based on the analysis of the names and surnames. Also, we will study how to improve the
indexes definition, focusing on how to normalize them in a more suitable way, as the GeoDI
index might be a bit penalised with the current normalisation. Finally, we would like to
incorporate more conferences to be able to perform some long-term analysis.
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